Activity of Cefepime-Taniborbactam (FTB) Against Enterobacterales and P. aeruginosa Collected Globally in 2018-2021 Stratified by **β-lactamase Carriage**

ihma **IHMA** 2122 Palmer Drive

Schaumburg, IL 60173 USA

www.ihma.com

M. Wise¹, M. Hackel¹, D. Sahm¹

¹IHMA, Inc., Schaumburg, IL, USA

INTRODUCTION

The novel cyclic boronate-based broad-spectrum β-lactamase inhibitor, taniborbactam, inhibits serine-β-lactamases, as well as NDM and VIM metallo-β-lactamases (Ambler Classes A, B, C and D) [1]. Taniborbactam is being developed in combination with cefepime for use against cephalosporin-, carbapenem-, and multidrugresistant Enterobacterales and Pseudomonas aeruginosa. The in vitro activity of cefepime-taniborbactam (FTB) and comparators was evaluated against a recent global collection of clinical isolates of Enterobacterales and *P. aeruginosa* in the context of their βlactamase carriage.

METHODS

- Enterobacterales and 6,417 P. aeruginosa isolates collected from 59 countries in 2018-2021 were a part of this study (Figure 1).
- MICs of cefepime with taniborbactam fixed at 4 mg/L and comparator agents were determined using the ISO 20776-1:2019 reference method [2] and interpreted using 2022 EUCAST breakpoints [3].
- For FTB, a provisional susceptible MIC breakpoint of ≤16 mg/L was employed for comparative purposes only.
- Organisms with FTB MIC ≥16 mg/L were characterized by whole genome sequencing, while those resistant to meropenem by CLSI breakpoints [4] were screened for acquired β-lactamase carriage by PCR followed by Sanger sequencing, as previously described [5]. Additionally, 945 Enterobacterales isolates with FTB MIC values ≤8 mg/L and meropenem MIC values ≤2 µg/mL testing with cefepime and/or ceftazidime MIC values ≥2 mg/L were screened by PCR/Sanger. Also, 638 *P. aeruginosa* isolates with FTB MIC values ≤8 mg/L and meropenem MIC values ≤4 mg/L testing with cefepime and/or ceftazidime MIC values ≥16 mg/L were screened by PCR/Sanger.

RESULTS SUMMARY

- Regions contributing the most isolates to this study included Europe (43%), North America (27%) and Latin America (11%) (Figure 1).
- Against Enterobacterales carrying NDM or VIM metallo-βlactamases, FTB was the most active agent tested as 75.3% and 94.7% of the respective groups were inhibited at ≤16 mg/L (Table 1, Figure 2). The most active comparator, MEV, inhibited 10.0% and 50.0% of the NDM- and VIM-carrying isolates, respectively.
- FTB also demonstrated potent activity against Enterobacterales harboring KPC, OXA-48 group, ESBL and AmpC-type serine-βlactamases with 100%, 99.1%, 99.1%, and 97.3% of the isolates inhibited at ≤16 mg/L, respectively (Table 1, Figure 2). Ceftazidime-avibactam, and meropenem-vaborbactam (with the exception of the OXA-48 group), also demonstrated a high extent of coverage of these genotypically defined groups.
- FTB inhibited 82.7% of VIM-carrying isolates of *P. aeruginosa* at ≤16 mg/L, whereas all comparator agents were inactive versus this group (Table 2, Figure 3).
- FTB was the most active agent against *P. aeruginosa* harboring GES, PER, and VEB-type enzymes with 98.7%, 93.8% and 93.3% of the respective groups inhibited at ≤16 mg/L (Table 2, Figure 3).

CONCLUSIONS

Taniborbactam restored cefepime activity against most isolates of Enterobacterales carrying NDM and VIM-type metallo-β-lactamases, as well as isolates carrying serine β-lactamases including carbapenemases. Against *P. aeruginosa* carrying VIM-type metalloβ-lactamases, and GES-, PER- and VEB-type serine β-lactamases, cefepime-taniborbactam demonstrated greater activity than the currently available β-lactam/β-lactamase inhibitor combinations. Based on these in vitro data, cefepime-taniborbactam may represent a viable therapeutic option for use against difficult-totreat β-lactamase-harboring Gram-negative pathogens. Continued development is warranted.

REFERENCES

- 1. Hamrick, et al. 2020. https://journals.asm.org/doi/epub/10.1128/AAC.01963-19.
- 2.International Standard ISO 20776-1:2019(E). 2019. 3. The European Committee on Antimicrobial Susceptibility Testing. 2022. Breakpoint tables
- for interpretation of MICs and zone diameters. Version 12.0. http://www.eucast.org. 4.Clinical and Laboratory Standards Institute. 2022. Performance Standards for Antimicrobial Susceptibility Testing; Thirty-second Informational Supplement. CLSI
- Document M100S 2022. Wayne, PA. 5.Lob SH, Kazmierczak KM, Badal RE, et al. 2015. Trends in susceptibility of Escherichia coli from intra-abdominal infections to ertapenem and comparators in the United States according to data from the SMART Program, 2009 to 2013. Antimicrob Agents Chemother 59: 3606-10.

DISCLOSURES

This project began with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services; Administration for Strategic Preparedness and Response, Biomedical Advanced Research and Development Authority, under Contract No. HHSO100201900007C and 75A50122C00080, and The Wellcome Trust under Award No. 360G-Wellcome-101999/Z/13/Z, and continues with federal funds from the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response, Biomedical Development Authority, Research and Contract Advanced HHSO100201900007C.

RESULTS

Table 1. In vitro activity of cefepime-taniborbactam and comparator agents against molecularly characterized Enterobacterales isolates (n=1,819 in total), by genotypic subset

Genotype	N (%) ^a	MIC ₉₀ (mg/L)/Percent susceptible						
		FTB ^b	FEP	CZA	СТ	MEV	TZP	
MBL ^c	329 (18.1%)	>16/77.5	>16/0	>16/0.6	>8/0	>16/14.6	>128/0	
NDM	291 (16.0%)	>16/75.3	>16/0	>16/0.3	>8/0	>16/10.0	>128/0	
VIM	38 (2.1%)	16/94.7	>16/0	>16/2.6	>8/0	>16/50.0	>128/0	
KPCd	311 (17.1%)	4/100	>16/1.0	8/94.5	>8/1.3	4/96.5	>128/0.3	
OXA-48 group ^e	217 (11.9%)	4/99.1	>16/4.1	4/95.9	>8/3.2	>16/40.6	>128/0	
ESBLf	789 (43.4%)	1/99.1	>16/3.3	1/98.6	>8/75.5	0.12/99.7	>128/58.2	
AmpC ^g	75 (4.1%)	2/97.3	16/73.3	2/97.3	>8/56.0	0.12/100	>128/54.7	

Abbreviations: FTB, cefepime with taniborbactam fixed at 4 mg/L; FEP, cefepime; CZA, ceftazidime-avibactam; CT, ceftolozane-tazobactam; MEM, meropenem; MEV, meropenem-vaborbactam; TZP, piperacillin-tazobactam. ^aPercentage is based on total molecularly characterized isolates (Enterobacterales, n=1,819).

b"Percent susceptible" corresponds to percentage of isolates inhibited by ≤16 mg/L FTB (for comparative purposes only).

^cExcludes IMP-producing isolates, as IMP is outside the spectrum of taniborbactam inhibition [1] dExcludes isolates co-producing MBLs.

^eExcludes isolates co-producing MBLs and/or KPC. ^fExcludes isolates co-producing carbapenemases.

^dExcludes isolates co-producing MBLs.

⁹Excludes isolates co-producing carbapenemases and ESBLs

Table 2. In vitro activity of cefepime-taniborbactam and comparator agents against molecularly characterized P. aeruginosa isolates (n=1,591 in total), by genotypic subset

Genotype	N (%) ^a	MIC ₉₀ (mg/L)/Percent susceptible						
		FTBb	FEPc	CZA	СТ	MEV	TZPc	
VIM	231 (14.5%)	>32/82.7	>32/3.5	>16/2.6	>16/0.9	>16/6.1	>128/2.2	
GES ^d	78 (4.9%)	16/98.7	>32/46.2	>16/66.7	>16/1.3	>16/26.9	>128/5.1	
PER ^d	16 (1.0%)	16/93.8	>32/0	>16/12.5	>16/0	>16/25.0	>128/25.0	
VEB ^d	45 (2.8%)	16/93.3	>32/0	>16/2.2	>16/0	>16/4.4	>128/0	

Abbreviations: FTB, cefepime with taniborbactam fixed at 4 mg/L; FEP, cefepime; CZA, ceftazidime-avibactam; CT, ceftolozane-tazobactam; MEM, meropenem; MEV, meropenem-vaborbactam; TZP, piperacillin-tazobactam.

^aPercentage is based on total molecularly characterized isolates (*P. aeruginosa*, n=1,591) b"Percent susceptible" corresponds to percentage of isolates inhibited by ≤16 mg/L FTB (for comparative purposes only). °For FEP and TZP, "Percent Susceptible" corresponds to "Percent Susceptible, Increased Exposure."

Figure 2. Antimicrobial susceptibility of Enterobacterales carrying defined β-lactamases

Genotype (N/percent of total characterized)

FTB, cefepime with taniborbactam fixed at 4 mg/L; FEP, cefepime; CZA, ceftazidime-avibactam; CT, ceftolozane-tazobactam; MEV, meropenem-vaborbactam; TZP, piperacillin-tazobactam. Total N of Enterobacterales characterized molecularly = 1819. For FTB, percent susceptible corresponds to percentage of isolates inhibited by ≤16 mg/L (for comparative purposes only). MBL-carrying group excludes IMP-producing isolates, as IMP is outside the spectrum of taniborbactam inhibition [1]. KPC-carrying group excludes isolates co-producing MBLs. OXA-48-like-carrying group excludes isolates co-producing mBLs and/or KPC. ESBL-carrying group excludes isolates co-producing carbapenemases. AmpC carrying group excludes isolates co-producing carbapenemases and/or ESBLs.

Figure 3. Antimicrobial susceptibility of *P. aeruginosa* carrying defined β-lactamases

Genotype (N/percent of total characterized)

FTB, cefepime with taniborbactam fixed at 4 mg/L; FEP, cefepime; CZA, ceftazidime-avibactam; CT, ceftolozane-tazobactam; MEV, meropenem-vaborbactam; TZP, piperacillin-tazobactam. Total N of P. aeruginosa characterized molecularly = 1591. For FTB, percent susceptible corresponds to percentage of isolates inhibited by ≤16 mg/L (for comparative purposes only). GES-, PER- and VEB-carrying groups exclude isolates co-producing MBLs.