

Print this Page for Your Records

Close Window

Control/Tracking Number: 2023-A-44-ASM-ESC Activity: Abstract Current Date/Time: 5/11/2023 9:45:52 AM

Susceptibility Profiles of Baseline Gram-negative Pathogens from CERTAIN-1, a Phase 3 Study comparing Cefepime-taniborbactam to Meropenem in Adults with Complicated Urinary Tract Infection (cUTI)

Author Block: G. Moeck¹, L. B. Gasink², M. Dorr¹, P. C. McGovern¹; ¹Venatorx Pharmaceuticals, Inc., Malvern, PA, ²LBG Consulting, LLC, Saint Davids, PA

Abstract:

Background: Taniborbactam is an investigational β-lactamase inhibitor that restores cefepime (FEP) activity against FEP-, carbapenem-, and multidrug-resistant (MDR) Enterobacterales and *Pseudomonas aeruginosa* producing serine- and metallo-β-lactamases. Cefepime-taniborbactam (FTB) was superior to meropenem (MEM) for the primary composite (microbiologic and clinical) endpoint at test of cure in adults with cUTI in the CERTAIN-1 study (NCT03840148). We compared susceptibility to FEP, FTB, and MEM among Enterobacterales and *P. aeruginosa* recovered at baseline. **Methods:** MICs were determined by broth microdilution (CLSI M07) for baseline

pathogens from patients in the extended microbiologic intent-to-treat population (Enterobacterales and/or *P. aeruginosa* at $\geq 10^5$ CFU/mL in urine against which ≥ 1 study drug had activity [FTB MIC $\leq 16 \mu$ g/mL; MEM MIC $\leq 2 \mu$ g/mL (Enterobacterales) or $\leq 4 \mu$ g/mL (*P. aeruginosa*)]). Phenotypic subsets included ESBL, and FEP-, multidrug-, and carbapenem resistance (CLSI M100). **Results:** Taniborbactam decreased the FEP MIC₉₀ by $\geq 1,024$ -fold (to 1 μ g/mL) against FEP-resistant, ESBL, and

MDR subsets of Enterobacterales and by ≥128-fold (to 8 µg/mL) against carbapenem-resistant Enterobacterales (Table). FTB at ≤16 µg/mL inhibited 66.7%, 71.4% and 100% of FEP-, multidrug-, and carbapenem-resistant *P. aeruginosa*, respectively. Higher percentages of Enterobacterales and *P. aeruginosa* isolates, regardless of resistance phenotype, were inhibited by FTB compared to MEM.

Pathogen/phenotype (n)	MIC ₉₀ or MIC range (µg/mL)			%Susceptible		
	FEP	FTB	MEM	FEP	FTB*	MEM
nterobacterales overall (437)	512	0.25	0.12	73.5	99.8	96.8
efepime-resistant (106)	>512	1	2	0	99.1	88.7
SBL (126)	>512	1	1	8.7	99.2	90.5
/DR (167)	>512	1	0.5	34.7	99.4	91.6
arbapenem-resistant (10)	>512	8	64	10.0	100	0
e aeruginosa overall (23)	32	16	16	69.6	91.3	82.6
efepime-resistant (6)	32-512	4-32	0.25->64	0	66.7	50.0
/IDR (7)	16-512	4-32	0.25->64	0	71.4	57.1
arbapenem-resistant (5)	4-512	4-16	0.5->64	40.0	100	20.0

Conclusions: Taniborbactam potentiated FEP activity against resistant isolates of Enterobacterales and *P. aeruginosa* from patients in the CERTAIN-1 cUTI study. These results are consistent with the ability of taniborbactam to restore FEP activity against most isolates of FEP-, multidrug-, and carbapenem-resistant gram-negative pathogens producing serine- and metallo-β-lactamases in nonclinical studies.

Category (Complete): Are We Developing the Right New Antibacterials? Presentation Preference (Complete): Poster or Oral Additional Information (Complete): Please Select: (Required) No Please Select: (Required) No Please Select: (Required) No

Status: Complete

American Society for Microbiology 1752 N Street N.W. Washington, D.C. 20036 Phone: (202) 737-3600

If you encounter any technical difficulties, please contact the OASIS Helpdesk

Feedback

Powered by <u>cOASIS</u>, The Online Abstract Submission and Invitation System SM © 1996 - 2023 <u>CTI Meeting Technology</u> All rights reserved. <u>Privacy Policy</u>