2122

In Vitro Activity of Cefepime-Taniborbactam and Comparator Agents Against **Gram-Negative Bacteria Isolated from Patients with Cancer**

THE UNIVERSITY OF TEXAS MDAnderson **Cancer** Center

Making Cancer History®

Background:

The incidence of Gram-negative (GN) bacterial infections has been increasing in patients with cancer underscoring the critical need for innovative therapeutic interventions to particularly target the emergence of the most concerning multidrug-resistant (MDR) GN pathogens. Taniborbactam, is a β-lactamase inhibitor (βLI), that when combined with cefepime (FEP), may offer a potential treatment option for patients with serious GN bacterial infections. This study aimed to evaluate the *in vitro* activity of a novel combination of cefepime-taniborbactam (FTB) and compare it to other antibiotics active against recent GN bacterial pathogens isolated from patients with cancer (PWC) at our institution.

Material and Methods:

Recent 270 GN clinical isolates from cancer patients were tested against FTB and comparators. CLSI approved broth microdilution method was used. Appropriate ATCC controls were included. MIC_{50} , MIC_{90} , and percent of susceptibility calculations were made using CLSI breakpoints when available. Statistical analysis was used using Fisher exact test (significance at $P \leq 0.05$).

Bahgat Gerges, PhD; Joel Rosenblatt, PhD; Y-Lan Truong, BS; Ying Jiang MS; Ray Hachem, MD; Anne-Marie Chaftari, MD; Issam Raad, MD. *The University of Texas, MD Anderson Cancer Center

Comparative Susceptibility (%) of cefepime-taniborbactam and comparators against GNB including highly resistant pathogens isolated from patients with cancer

	0	0,	•	0		•			
Species	[#] No.	FTB ##No. (S:%)	FEP ##No. (S:%)	CZA ##No. (S:%)	C/T ##No. (S:%)	MEM ##No. (S:%)	TZP ##No. (S:%)	LVX ##No. (S:%)	AMK ##No. (S:%)
**ESBL E coli	20	20 (100)	1 (5)	20 (100)	17 (85)	20 (100)	9 (45)	2 (10)	20 (100)
<i>p</i> -value*			<0.0001	NA	NS	NA	0.0001	<0.0001	NA
CRE- <i>E coli</i>	10	8 (80)	0 (0)	5 (50)	2 (20)	3 (30)	1 (10)	0 (0)	6 (60)
<i>p</i> -value*			<0.001	NS	0.023	NS	0.006	<0.001	NS
ESBL- <i>K. pneumoniae</i>	25	25 (100)	2 (8)	25 (100)	10 (40)	25 (100)	7 (28)	8 (32)	25 (100)
<i>p</i> -value*			<0.0001	NA	<0.0001	NA	<0.0001	<0.0001	NA
CRE- <i>K. pneumoniae</i>	20	20 (100)	0 (0)	16 (80)	0 (0)	3 (15)	3 (15)	0 (0)	15 (75)
<i>p</i> -value*			<0.0001	NS	<0.0001	<0.0001	<0.0001	<0.0001	0.047
MDR P. aeruginosa	20	19 (95)	0 (0)	14 (70)	13 (65)	2 (10)	5 (25)	0 (0)	13 (65)
<i>p</i> -value*			<0.0001	NS	0.044	<0.0001	<0.0001	<0.0001	0.044
Stenotrophomonas maltophilia	30	30 (100)	0 (0)	10 (33.3)	4 (13.3)	0 (0)	0 (0)	17 (56.7)	8 (26.7)
<i>p</i> -value*			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total of resistant isolates	125	122 (97.6%)	3 (2.4%)	90 (72.0%)	46 (36.8%)	53 (42.4%)	25 (20.0%)	27 (21.6%)	87 (69.6%)
<i>p</i> -value*			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
GNB other than resistant isolates	145	145 (100.0%)	104 (71.7%)	143 (98.6%)	122 (84.1%)	136 (93.8%)	82 (56.6%)	111 (76.6%)	144 (99.3%)
<i>p</i> -value*			<0.0001	NS	<0.0001	0.003	<0.0001	<0.0001	NS
Total (of all tested isolates)	270	267 (98.9%)	107 (39.6%)	233 (86.3%)	168 (62.2%)	191 (70.7%)	107 (39.6%)	138 (51.1%)	231 (85.6%)
<i>p</i> -value*			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

Abbreviations:

FTB= Cefepime-taniborbactam; **AMK**= Amikacin; **FEP**= Cefepime; **CZA**= Ceftazidime-avibactam; **C/T**, Ceftolozanetazobactam; **MEM**= Meropenem; **TZP**= Piperacillin-tazobactam; **LVX**= Levofloxacin; **ESBL**= Extended Spectrum β-Lactamase; CRE= Carbapenem-resistant Enterobacterales; MDR = Multi-drug resistance; NS=Non-significant (p>0.05); **NA**= Non-applicable as no statistics is computed because the variable has only one level. **Notes:** #No=Number of tested isolates; ##No. (S:%) = Number of susceptible isolates (Percent of susceptibility); * P*value* is from Fisher's exact test comparing the corresponding comparator with FTB.

Results:

- maltophilia.

Conclusions:

- lactamase.

Bahgat Gerges, PhD bzgerges@mdanderson.org Cell: 832-690-0009 Fax: 713-792-1802

• FTB demonstrated highly potent activity against all tested Enterobacterales including ESBL, and CRE as well as against *P. aeruginosa* including MDR isolates, and *Stenotrophomonas*

• At a provisional breakpoint of $\leq 16/4 \ \mu g$ ml-1, FTB inhibited all tested species of Enterobacterales with overall 98.9% susceptibility while it was ranged from 39.6% to 86.3% for cefepime (FEP), and ceftazidimeavibactam (CZA) respectively with highly significant differences (P < 0.0001) between FTB and all tested comparators.

• Our data demonstrates that the FTB combination has promising activity against GN bacterial pathogens isolated from PWC including MDR, CRE and ESBL isolates. • Taniborbactam as βLI in a combination with FEP showed activity against 98.9% of tested GN bacterial isolates, in contrast to other BL/BLI combinations that exhibited lower activity than cefepime-taniborbactam.

• Further studies are warranted to compare FTB to other BL/BLI combinations against virulent organisms expressing serine, and metallo- β -