Title: ARGONAUT-III: Susceptibility of Carbapenem-resistant Klebsiellae to Cefepime-Taniborbactam

Authors

<u>Mack, Andrew R ^{1,2}</u>. Bethel, Christopher R ². Marshall, Steven ². Patel, Robin ³. van Duin, David ⁴. Fowler, Vance G ⁵. Rhoads, Daniel D ⁶. Jacobs, Michael R ⁶. van den Akker, Focco ¹. Six, David A ⁷. Moeck, Greg ⁷. Papp-Wallace, Krisztina M ^{1,2}. Bonomo, Robert A ^{1,2,8}.

¹ Case Western Reserve University, Cleveland, Ohio, USA.

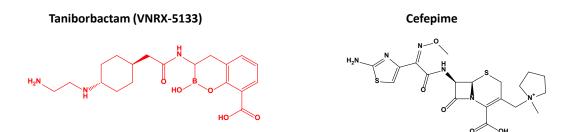
- ² Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA.
- ³ Mayo Clinic, Rochester, MN, USA.
- ⁴ University of North Carolina, Chapel Hill, NC, USA.
- ⁵ Duke University Medical Center, Durham, NC, USA
- ⁶ University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
- ⁷ Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA.
- ⁸ CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (CARES), Cleveland, Ohio, USA.

Background

Klebsiellae are Gram-negative pathogens responsible for serious nosocomial and community-acquired infections. Carbapenem resistance, both intrinsic and acquired, complicates therapy. Taniborbactam (formerly VNRX-5133; Fig 1) is a bicyclic boronate β -lactamase inhibitor (BLI) that inhibits all four Ambler classes of β -lactamase enzymes, both serine- and metallo-, with the notable exception of class B IMP β -lactamases. Taniborbactam is currently undergoing phase 3 clinical trials in combination with cefepime (FEP; Fig 1) as part of the β -lactam-BLI (BL-BLI) combination FEP-taniborbactam (FTB).

Methods

We determined the activity of FTB against 200 carbapenem-resistant *Klebsiellae* (CRK) strains collected as part of the Antibiotic Resistance Leadership Group (ARLG) Consortium on Resistance against Carbapenems in *Klebsiella* (CRACKLE) study. Among these strains, 193 expressed class A KPCs, one expressed a class B NDM, and six expressed class D OXA-48 or variants. Broth microdilution minimum inhibitory concentrations (MIC)s were determined using the ThermoFisher Sensititre system with custom assay panels. American Type Culture Collection strains were used for quality control. The susceptible-dose-dependent breakpoint for FEP was provisionally used for FTB.


Results

Among the 200 *Klebsiella* strains tested, susceptibility for β -lactams alone ranged from 1% for ceftazidime (CAZ), 2.5% for meropenem, and 13.5% for FEP (Table 1). The addition of BLIs increased % susceptibility compared to BL alone to: 98% for CAZ-avibactam (CZA); 95.5% for MEM-vaborbactam (MVB); and 99.0% for FTB. MIC₅₀ and MIC₉₀ were in the susceptible and provisionally susceptible range for CZA and MVB, and in the provisionally susceptible range for FTB. Analyzing the CZA and MVB non-susceptible strains, 7 of 9 MVB non-susceptible strains and 2 of 4 CZA-resistant strains were provisionally susceptible to FTB.

Title: ARGONAUT-III: Susceptibility of Carbapenem-resistant Klebsiellae to Cefepime-Taniborbactam

Conclusions

The addition of taniborbactam restored susceptibility to FEP in 99.0% of CRACKLE isolates studied, comparable to CZA and MVB. Taniborbactam also restored FEP activity against some MVB- and CZA-resistant strains. FTB may provide a promising therapy for CRK infections.

Figure 1: Structures of taniborbactam and cefepime. The β -lactamase inhibitor is in red and the β -lactam antibiotic is in black.

	АМК	CST	CAZ	CZA	FEP	FTB	MEM	MVB	TGC
CLSI Susceptible Breakpoint	≤16	≤2*	≤4	≤8/4	≤8	≤8**	≤1	≤4/8	≤2
MIC ₅₀	16	0.5	>16	1	>32	0.25	>4	≤ 0.03	1
MIC ₉₀	32	>4	>16	2	>32	2	>4	1	4
%S	60	77	1	98	13.5	99**	2.5	95.5	88.5

Table 1: MIC₅₀ and MIC₉₀ values (μg/mL) and percent susceptibility for *Klebsiella pneumoniae* strains (n=200). AMK, amikacin; CST, colistin; CAZ, ceftazidime; CZA, ceftazidime-avibactam; FEP, cefepime; FTB, cefepime-taniborbactam; MEM, meropenem; MVB, meropenem-vaborbactam; TGC, tigecycline. * The breakpoint for CST is intermediate, as no susceptible breakpoint is available. ** The susceptible-dose-dependent breakpoint for FEP alone was provisionally applied to FTB. Breakpoints from CLSI M100, 31st ed, 2021.